

2019 Aut = A _ _ _ A _ _ _ A

:// . . . /10.1037/ 1 0000619

Davis - La (La sina si - and s

, C , , , ,

1 f3. 1 £ 2 1 ~_ ~~_ 1 f. 1 ff 2 1 م بر ب_{ر (}..., ر سال). D w f. W. 1). H w -5 W ____ $\begin{array}{c} \mathbf{M} \quad \vec{\uparrow} \quad \vec{\uparrow} \quad (1 - \frac{1}{2} - \mathbf{f} \quad \mathbf{H} \quad \mathbf{f} \quad \vec{-1} \quad \mathbf{H} \quad \mathbf{F} \quad \vec{\uparrow} \quad \mathbf{M} \quad \mathbf{f} \quad$ **2** 4). T 1 f. 1 f.

Keywords: I I _ _ _ I for it _ _ _ _ I for it _ _ _ _ _ I for , _ _ I for , _ _ I for , _ _ I for _ _ _ _ _ I

f 1 - f. 1 Ни м. – ff 5 į . . . L . , Т. щ. т. т. for an floor, - - w L f, . I ff f ш 1..... 2 JI. 1 .

• • • , IDG/ С, , NIG (2 I...) Li (1. 1. 1. - 1 K L.... 1 _ r- C _ r _ C . 1 - t -

с, С., , , , , ..., В. ..-

л f. 1.2 , & J , I , 2005; 2 W Ĩ£, Ĩ. (i., Di , and , M i £. D' . & 1 ..., 2002; I.- 1, M. ..., K. ..., & ..., 2000; $\begin{array}{c} \& \exists \mathbf{n}, 2002; \mathbf{1} = \exists, \mathbf{M} \neq \mathbf{n}, \mathsf{K}, \mathbf{m}^{+}, \& \mathbf{n}, \mathbf{n}, 2000; \\ \& \mathbf{F}, \mathbf{n}^{+} = 2005; \mathsf{W} = 2205; \\ \mathbf{f}, \mathbf{n}^{+} = 2005; \mathsf{W} = 2205; \\ \mathbf{f}, \mathbf{n}^{+} = 2005; \mathsf{W} = 2005; \\ \mathbf{f}, \mathbf{n}^{+} = 200; \\ \mathbf{f}, \mathbf{n}^{$ 21 #

D 🖬 🗦

F

 $\mathbf{E}_{\mathbf{M}} = \mathbf{E}_{\mathbf{M}} \mathbf{$.પ 111 м. f f., $\begin{array}{c} \mathbf{A} \\ \mathbf{$ f., , , $\mathbf{M} = \left[\begin{array}{ccc} \mathbf{D} & \mathbf{D} & \mathbf{D} \\ \mathbf{D} & \mathbf{D}$ $\begin{bmatrix} \mathbf{f}_{1} & \mathbf{f}_{2} \\ \mathbf{f}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{f}_{1} & \mathbf{f}_{2} \\ \mathbf{f}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{f}_{2} & \mathbf{f}_{2} \\ \mathbf{f}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{f}_{2} & \mathbf{f}_{2} \\ \mathbf{f}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{f}_{2} & \mathbf{f}_{2} \\ \mathbf{f}_{2} \end{bmatrix}$ F. F. M. M. F. F.

an the stand of the second and the second se 1 f2, 1, 1, 1, 1, 1, w, e, 1, 2, ..., f, ..., - £3-्र**ग**्र 🕅 ---- $f = \frac{1}{12} + \frac{1}{$ м <u>1</u> f L . f i M $\begin{array}{c} & = & = & \frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] , \\ & = & \frac{1}{2} \left[\frac{1}{2} + \frac{1}{2} \right] \\ & = & \frac{1}{2} \left[\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right] \\ & = & \frac{1}{2} \left[\frac{1}{$ 12. 1

Experiment 1

-/ ..., M. J. ..., (A. .., M. J. .., I. ..., , C. J., & J. ..., 1986; I.u., /..., Z., K. J., I. J., & B..., J. 1977; J. ..., 1980; J. J., 1970), T. J. f. J., f. J. ..., J. f. M. J. ..., J. W. ..., J. J. ..., M. J. ..., M. J. J. ..., M. J. ..., M. J. ..., M. J. J. ...,

Method

 Participants.
 (1) (1) (1)

 19 f
 (1) (1) (1) (1)

 1
 (1) (1) (1) (1)

 1
 (1) (1) (1) (1)

 1
 (1) (1) (1) (1)

 1
 (1) (1) (1) (1)

 1
 (1) (1) (1) (1)

 1
 (1) (1) (1) (1)

 1
 (1) (1) (1) (1)

 1
 (1) (1) (1) (1)

 1
 (1) (1) (1) (1)

 1
 (1) (1) (1) (1)

 1
 (1) (1) (1) (1)</t

 $f = \frac{1}{2} + \frac{1}{2} +$

TA FE FT EFE E C LEAFIG

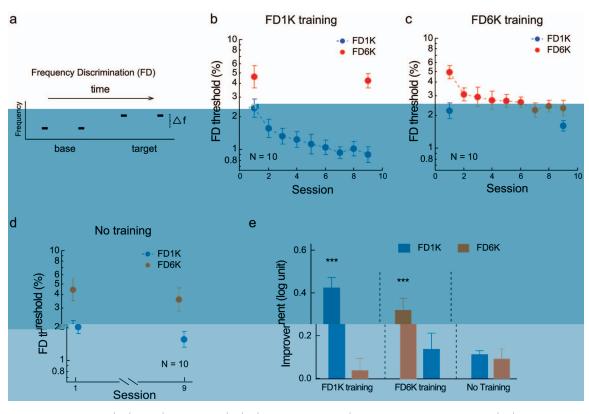


Figure 1. Find f £ £,1 f.) w J j W $\dot{z}_{1} = 6 \text{ H}_{1}() \hat{\nabla}^{\dagger}$ 1 H_ at B.A. L _ آخمہ ہ • 6 H_ __1 H__6 H w___, _, () () () 24_____J 3 12. 11. - 2 ... - 1 f. 1 . . ± 1 SE. FD:

 $\begin{array}{c} \dots \ \mathbf{f} \ \mathbf{f}$

Experimental design. (Tw. 1811) £₺.₫. ____ 6Н, 1_ FD1 _ 2 HÎ 33 f i w л· f 1 ffin 12 f. , (1_ 6 H). E f 12 1 H f - FD1 200 ۴ FD6 1 2 2 ÷, - w ণ প j, i Data processing and statistical analysis. $D_{-} \le W \ge$ i, ..., f w ≥ (/ C ≥ 9 ⊥ m, 2015), I _ i , i ≥ m f≥, i, ..., f ≥ m _ m _ f ≥ m _ f = m _ f = m $p < .001_ 1 H_ p < .001_ 6 H_ f$

 $f_{1} = 0$, $f_{2} = 0$, $p_{1} = 0$, $p_{2} = 0$, $p_{2} = 0$, $p_{1} = 0$, $p_{2} = 0$, $p_{2} = 0$, $p_{1} = 0$, $p_{2} = 0$, $p_{2} = 0$, $p_{1} = 0$, $p_{2} = 0$, $p_{$

÷. .), ..., f., (..., ..., FD1, FD6, ..., f., M.E. ... $\begin{array}{c} \mathbf{M} & 1 \\ \mathbf{FD6} & \mathbf{CD1} \\ \mathbf{FD1} & \mathbf{F}6 \\ \mathbf{K} & \mathbf{K} \\ \mathbf{K} \\ \mathbf{K} & \mathbf{K} \\ \mathbf{K}$ 2,_ 3)_ f. i iff F f. tîn € f л ٩Ť • ff f. 121 i nai (_ _ W. , 2004).

Results

Carl H M & T B. M. $FD1 = 0.42 \pm 0.05 (\text{m} \pm 1.7)$ Ĩ). FD6 -6 H - 6 H - $0.14 \pm 0.08 \quad (1.1 \pm 0.02) = 1 \quad H \quad (F_{11} \ge 1 = 1) \quad (F_{11} \ge 1) = 1$ $M_{\rm eff} = 0.011 \pm 0.02$ m $_{\rm eff}$ 1 H $_{\rm eff}$ 0.09 ± 0.05 6 H (F., 21 _ 1).

f(0, 190) = 6.87, p < .001; f(0, 190) = 6.87, p < .001;

F(6, 190) = 3.89, p = .001.I E 3.89, p = .001. $f = 1, \dots, f = 1, \dots, f$ $-0.10, 0.18, C_{1}$, $d = 0.17; F_{1}, 2$, 1 - 1, T_{2} , $T_$ = 1.0, 0.1(t = 1.95, p = .053, 95% CI -0.002, 0.27, C, d = 0.62; \mathbf{F}_{i} , \mathbf{J}_{1-} , \mathbf{f}_{i}). \mathbf{f}_{i} , \mathbf{f}_{i-} , $\mathbf{f}_$ f_{2}^{2} , (1 H : t = 1.59, p = .11, 95% CI -0.03, 0.25),C \vec{J} ' d = 0.50; 6 H : t = 1.32, p = .19, 95% CI -0.04, 0.23, C \vec{J} ' d = 0.42; F : \vec{J} 1 - \vec{F}) \vec{J} - \vec{J} و ام ا م ا م

Discussion

 $\begin{array}{c} (\mathbf{T}_{1},\mathbf{T}_{2},\mathbf{T$

Experiment 2

 $\mathbf{E}_{\mathbf{x}} = \mathbf{E}_{\mathbf{x}} + \mathbf{E}_{\mathbf{x}} +$ $\begin{array}{c} \mathbf{E}_{\mathbf{y}} \left[\mathbf{z}_{\mathbf{w}} \left[\mathbf{x}_{\mathbf{y}} \right] \left[\mathbf{z}_{\mathbf{w}} \left[\mathbf{z}_{\mathbf{w}} \right] \mathbf{z}_{\mathbf{w}} \left[\mathbf{z}_{\mathbf{w}} \left[\mathbf{z}_{\mathbf{w}} \right] \mathbf{z}_{\mathbf{w}} \right] \mathbf{z}_{\mathbf{w}} \left[\mathbf{z}_{\mathbf{w}} \left[\mathbf{z}_{\mathbf{w}} \right] \mathbf{z}_{\mathbf{w}} \right] \mathbf{z}_{\mathbf{w}} \left[\mathbf{z}_{\mathbf{w}} \left[\mathbf{z}_{\mathbf{w}} \right] \mathbf{z}_{\mathbf{w}} \right] \mathbf{z}_{\mathbf{w}} \mathbf{z}$

Method

 Participants.
 1/7 2**...** -

್ರೆ ಎಂದು ಸಂಪರ್ಧ ಮತ್ತು ಮತ್ತು ಮತ್ತು ಬೇಕಿದ್ದಾರೆ. ಇದು ಸ್ಥಾನವರು ಸಂಪರ್ಧಿಸುವ ಸಂಪರ್ಧಿಸುವ ಸಂಪರ್ಧಿಸುವ ಸಂಪರ್ಧಿಸುವ ಸೇವರಿ ಸ ಸ್ಥೇಷಣ ಹೊಂದು ಸೇವರಿ ಸೇವ Experimental design, (1, 2, 3)(FD6 (TID1 , 27, 3), $\frac{1}{2}$ = ..., $\frac{1}{2}$, $\frac{1}$

₩ 3 <u>-</u> <u>2</u> <u>-</u> .

Results

 $\begin{array}{c} \mathbf{F}_{1} = \mathbf{F}_{1} + \mathbf{F}_{1} + \mathbf{F}_{1} + \mathbf{F}_{1} + \mathbf{F}_{2} + \mathbf{F}_{2} + \mathbf{F}_{1} + \mathbf{F}_{1} + \mathbf{F}_{2} + \mathbf{F}$

(t = 6.28, p < .001, 95% CI 0.32, 0.61, C d = 2.091 + (t = 4.21, p < .001, 95%) CI 0.16, 0.46, $\begin{array}{c} (1, w) & (1, y) & (1, y$ I $f_{2} = 0$ $f_{2} = 0$ $f_{3} = 0$ $f_$

Discussion

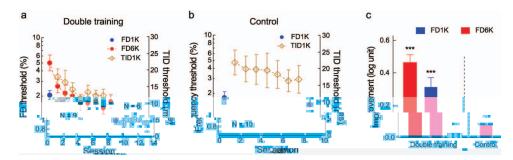


 Figure 2.
 $\mathbf{\hat{f}} \neq \mathbf{\hat{f}} \neq \mathbf{\hat{f}} \neq \mathbf{\hat{f}} \neq \mathbf{\hat{f}} = \mathbf{\hat{f}}$

Experiment 3

- ' --,... ------ t --f МĴ ٩ و. w T ff f f. -, **f** - I - 1 6 H _ _ / 21 w 6-H , w w /] __

Method

Aut -

 Participants.
 Twi
 Tip
 Tip

Results

D , (1, 2, 3, 4, 5), (1, 4, 5), (1, 4, 5), (1, 4, 5), (1, 4, 5), (1, 4, 5), (1, 4, 5), (1, 4, 5), (1, 5),

Discussion

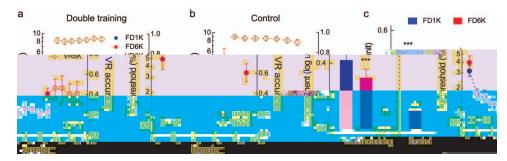


Figure 3. (f) = ff, f' = ff,

Experiment 4

H w f_{1} , f_{2} , f_{2} , f_{2} , f_{3} , f_{4}

Method

Participants. (w) = 1 (u = 1 - 14 f = 1; w = -1 = 23.6 = -, SD = 3.0 = -1. Tasks. (v) = 1 f = -1 =

Experimental design. E = . In the second course of the second se . E f 18 _ _ _ _ f f. 1 12. 1 (1, 4, -6 H), _____ 1.5 ~ I . 1 . , f. , , • f.~ 6 H w. 2**.11** _ f f -f f 1 H ÷- --<u>W</u>, , **J** 1 H w **J** <u>W</u>_ 1 .4 wi W_ 12 17 л 2 _, м ў. _ Data analysis. A LME _____ w . I f ... ÷. $\begin{array}{c} w_{n} = \int \dots \left(\begin{array}{c} \frac{1}{2} \int \dots , \ y_{n} = \dots$ (1, 4,____ 6 &В, 2000). E 🚬 LME .m. £. л

Results

TA FEFF E FE E C LEAFIG

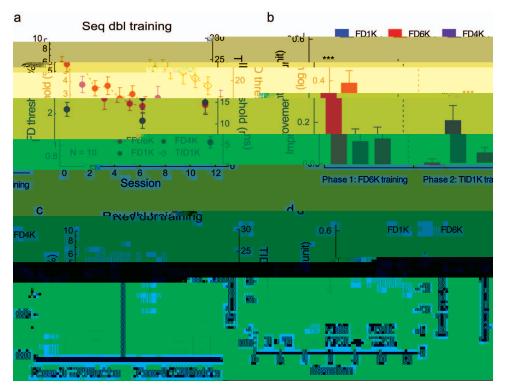


Figure 4. f. 2 Н 6, 4,_ 1 H w , M Щ. 2 6.4. ∕ W f. _ 1 H 6 H $= 6, 4, 1 \text{ H } w^{2} \ge 1, 3, ..., 5, ...,$ () भ्रे 1. FJ. 1 ± 1 SE. FD = \mathbf{f}^{\pm} ; TID = 7 m, ___ . . Ese - - -*** p < .001. - - I for f ... fr 2.

 F
 1

(t = 3.61, p = .001, 95% CI 0.07, 0.34, C $\stackrel{1}{}$, d = 1.14), ..., d = 1.4, H (t = 0.82, p = 1.00, 95% CI -0.09, 0.18, C $\stackrel{1}{}$, d = 0.23) ~ 6 H (t = 0.21, p = 1.00, 95% CI -0.12, 0.15, C $\stackrel{1}{}$, d = 0.07; F₁, $\stackrel{2}{\sim} 4_{-}$ 4.).

 $\begin{array}{c} \mathbf{C} \quad \vec{1} \quad \vec{2} \quad \vec{3} \quad \vec{3} \quad \vec{1} \quad \vec{1} \quad \vec{1} \quad \vec{2} \quad \vec{3} \quad \vec{1} \quad \vec{1} \quad \vec{1} \quad \vec{3} \quad \vec{3} \quad \vec{3} \quad \vec{1} \quad \vec{1} \quad \vec{3} \quad \vec{$

Discussion

 $\begin{array}{c} \mathbf{G} \\ \mathbf$

 8
 I
 G, A, G, HA, G, A, D

 1
 0
 0
 0

 1
 0
 0
 0

 1
 0
 0
 0

 1
 0
 0
 0

 1
 0
 0
 0

 1
 0
 0
 0

 1
 0
 0
 0

 1
 0
 0
 0

 1
 0
 0
 0

 1
 0
 0
 0

 1
 0
 0
 0

 1
 0
 0
 0

 1
 0
 0
 0

 1
 0
 0
 0

 1
 0
 0
 0

 1
 0
 0
 0

 1
 0
 0
 0

 1
 0
 0
 0

 1
 0
 0
 0

 1
 0
 0
 0

 1
 0

1-11 1 13. F. , 3 f. & M , 2006; 1993). Hw 2011). I .41. W

Context

_ # f_ # . L . W. м f ff . D W **30**7 7 f W f 100% w **ff** £ L f n n

References

- A , L. M., M ,

- . . /10.1007/ 10162-005-5055-4

- ff 3 1 . The Journal of the Acoustical Society of America, 111, 1377, 1388.
- $\mathbf{f}_{\mathbf{r}} = \{\mathbf{f}_{\mathbf{r}}, \mathbf{f}_{\mathbf{r}}, \mathbf$ D 15(10): 11.
- Proceedings of the National Academy of Sciences of the United States of
- H $_{\text{dec}}$, H., G $_{\text{dec}}$, M., & $_{\text{dec}}$, D. (2012). G $_{\text{dec}}$, $_{{\text{dec}}}$, $_{{{$ 1813 1817...
-). The Journal of Comparative Neurology, 171, 111 128.
- $f_{1} = \frac{1}{2} + \frac{10.10027}{10.10027} + \frac{10.01710108}{10.1008}$ L. $f_{2} = \frac{1}{2} + \frac{1}$.1121/1.1323465
- .384982
- 1.4773864
- w, M., J. D. (2011). К, ..., Ч., G., ⁴.,
- 6 00051
- /10.1163/156856897 00366
- £ . Journal of Computational and Graphical Statis-
- J., J., & B J., D. (2000). Mixed-effects models in S and S-PLUS. [↑]w , : , : , : , : // , /10.1007/978-1-4419-0318-1 [↑] , D. B., [↑] , E. E., & M . . , M. M. (2006). [↑] .

- .2016

- $\mathbf{A} = \mathbf{A}, \mathbf{B}, \mathbf{A}, \mathbf{A} = \mathbf{A}, \mathbf{A}$ (2009). $\mathbf{A} \neq \mathbf{A} \mathbf{W}, \mathbf{f} = \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A}$ • _ _ _ _ _ _ _ _ _ . Philosophical Transactions of the Royal Society of
- - /10.1016/2008.10.030

 $f = \frac{1}{2}$, $f = \frac{1}{2}$, f =

 $f_{1} = - f_{2} = eLife, 5, 1, 17.$ $f_{1} = - f_{2} = eLife, 5, 1, 17.$ $f_{2} = - f_{3} = eLife, 5, 1, 17.$ $f_{3} = - f_{3} = eLife, 5, 1, 17.$ $f_{3} = - f_{3} = eLife, 5, 1, 17.$ $f_{3} = - f_{3} = eLife, 5, 1, 17.$ $f_{3} = - f_{3} = eLife, 5, 1, 17.$ $f_{3} = - f_{3} = eLife, 5, 1, 17.$ $f_{3} = - f_{3} = eLife, 5, 1, 17.$ $f_{3} = - f_{3} = eLife, 5, 1, 17.$ $f_{3} = - f_{3} = eLife, 5, 1, 17.$ $f_{3} = - f_{3} = eLife, 5, 1, 17.$ $f_{3} = - f_{3} = eLife, 5, 1, 17.$ $f_{3} = - f_{3} = eLife, 5, 1, 17.$ $f_{3} = - f_{3} = eLife, 5, 1, 17.$ $f_{3} = - f_{3} = eLife, 5, 1, 17.$ $f_{3} = - f_{3} = eLife, 5, 1, 17.$ $f_{3} = - f_{3} = eLife, 5, 1, 17.$ $f_{3} = - f_{3} = eLife, 5, 1, 17.$

- _____ Journal of Vision, 13(4), 19. ____ /10.1167/13 .4.19
- 12328.
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 ://
 :///
 :///
 :///
 :///
 :///
 :///
 :///
 :///
 :///
 :////
 :////
 :////
 :////
 :////
 :////
 :////
 - ¶_,¶_m,¶_,-2, 2018 M - 28, 2019 4 M → 30, 2019 ■