Planning routes across economic terrains: maximizing utility, following heuristics

Hang Zhang ${ }^{1,2 *}$, Soumya V. Maddula ${ }^{1}$ and Laurence T. Maloney ${ }^{1,2}$

FIGURE 1 | Route planning across terrains. (A) A landscape and a goal. The energy costs and risk associated with different paths in natural landscapes can vary markedly. A possible starting point and goal are marked. (B) Example of the economic route planning task. The task was to move one's index finger along the surface of a touch screen from the starting point (blue circle) to the destination (gray circle). The screen consisted of two regions: desert (yellow or red) and field
(green). Dimensions of the stimuli are shown on the margins. The parameter λ denotes the distance from the vertex of the desert to the vertical middle line joining start point and goal. Each unit of distance traveled incurred a cost. Traveling in the yellow desert cost three times more per unit distance than traveling in the field, while traveling in the red desert cost five times more. Participants received a fixed bonus minus the cost incurred in travel for each trial. See text.

The o ${ }_{i}$ eoflea ${ }_{E i}$ co $_{A i}$ (and ma im main) i ni e, de, e mined b_{A} he geome A_{i} and co a_{i} io of he $\mathrm{o}_{A} \mathrm{e}^{2}$ ain. The co ${ }_{A}$ and

We com a ed h man e fo mance o ideal e fo mance ma imiling gain b com ing each $\mathrm{a}_{-i} \mathrm{ici} \mathrm{an}_{i}$ ' efficiency, hi o he ac_{j} al inning di ided b , he ma im m inning o ible. In com ing_{A} he ma im m o ible, e_{j} ook in $\mathrm{n}_{\boldsymbol{j}} \mathrm{o}$ acco $\mathrm{n}_{\boldsymbol{j}}$ each a ici an ${ }_{A}$, nge mo emen, a iabili, ${ }_{A}$.

We, e eal oin $\mathrm{e}_{\mathcal{A}}$ ed in cha ace e_{Z} ing, in de ail, he a ic la $\mathrm{a}_{4} \mathrm{e} \mathrm{n}$ of fail e of each a_{1} ici an b in e_{i} iga ing he a ician. ${ }^{\prime}$ e ofo fail e_{i} o e heuristics -- le ha, a echa aç e i ic of o imal o e lanning. A halle lain in ail in he Re , , he 0_{i}^{-i} imal or ${ }_{-1}$ e ho ld (1) onl change di ec ion hen changing ${ }_{i}$ e ain and ohe i e be aigh (straight-line heuristic); (2) ha e a lef igh, if if he e_{A} ain nde go a lef igh, \quad (left-right symmetry heuristic, $L \dot{A} h$ heuristic); and (3) ha \vec{e} mme a o nd he ho $i_{2} \operatorname{lon}_{-1}$ al line bi ec, ing ${ }_{-i}$ he c een (up-down symmetry heuristic,
$60 \mathrm{~cm} \times 24 \mathrm{~cm}$ ec $_{i}$ angle a ea on he ceen. D ing each ial, ${ }_{A}$ he en, i e c een eithe looked like $\mathrm{eld}_{i}^{-i} \mathrm{e}$ ain (ing een) o like
 i_{i} a éling co a $_{i} \mathrm{e}$ e e e 1,3 , and 5 oin $_{i}^{-i}$ e cm, é ecit el fo
 ${ }^{1}$ imila ${ }_{i}$ e ain o ldat be ed in ${ }_{A}$ he lanning ha e, he e 200 oin, "o lde al US\$1.
Feedback of he leng, h and he oin of he ac, al_{i} ajec. $_{i} \mathrm{o}$ e e gi en af e^{-1} each i_{-1}. To enco age eci e mo emen, if he leng h of ajec o in a ial e ceeded 1.08_{i} ime of he linea di-

 en e ed lia ${ }_{x}$ e anal i^{-1}.
${ }^{1}$ The ${ }_{A}$ aining ga e a ici an ace ice in nge momen
 al o hel ed a ici an, nde and $_{i}$ a el co $_{i}^{-1}$ a ocia ed_{-i}^{-1} h diffe en e ain.

Pa ici an com le ed one, aining block fo each $\mathrm{e}_{\mathcal{A}}$ e of $\mathrm{e}_{\boldsymbol{i}}$ ain. TThe o de fo half of he a ici an a eld, éllo de e_{i}, and ed de e e_{A}; fo he o $_{-1}$ he half, ${ }^{-1}$ eld, ed de e_{i}, and ello de e_{4}^{-1}. The aimed di ${ }_{i}$ ance co ${ }^{-1}$ ld be $6,12,18,24,0 \quad 30 \mathrm{~cm}$. In each block, each di ${ }_{A}$ ance condi ion had 10 e e ition. The aining ha ehad 3 block $^{-1} \times 5$ di $_{-}$ance $\times 10=150$, ial in or $_{-i} \mathrm{al}^{-1}$.

Planning

Each, ial began i_{i} he a^{a} ing oin on g een backg o nd. The de e_{i} and he de ina ion' (Figure ib) a ea ed hen a ician ${ }_{i}$ hei nge on the ${ }_{i}$ a ing oin $_{i}$. The a k a ${ }_{i}$ o mo e
 Pa ici an kne ha he o ild ecei e a mone a e a d if he co of hei ajec a malle han he co of he aigh o ef om he ing oin o he de ina ion The amo of
 $\mathrm{e} \mathrm{e}_{i}$ he ame a a_{i} he had lea ned in he aining ha e. No feedback a gi en fo indi id $\mathrm{al}_{\mathcal{H}}$ ial. The acc m la $\mathrm{ed}_{-i} \mathrm{o}_{-1}$ al of oin fo each block of 50 ial a e o ed af e he block.
$\overline{\mathrm{T}}^{-1}$ o face o e mani la $_{i}$ ed: he geome of $_{i}^{-i}$ he de e e_{i} and he co a_{i}^{i} io of de e_{i} o eld. The di ance of he $\mathrm{e}_{i} \mathrm{e}^{-i}$ of he ${ }^{-1}$ de e ${ }_{A}$ othe e ical bí ec, ing line, λ, co ld be $14,18,22,26,0$ 30 cm . The co ${ }_{i}$ io of de e ${ }^{4}$ o eld a 3 (ello) o 5 (ed), a in aining. The o ien a ion of he de e_{A} a co n_{A} e balanced: he ha end of he de e co ld be on he lef (a in Figure 1B) ${ }^{-1} \mathrm{o}$ on he igh (a lef igh it of Figure 1B).

The e e e e i block, each fo a ingle de e e. Fo half of he a ici an ${ }_{A}$, he o de of block a ello (-10(a)-10(i/EMC /S an 3(
c een. The e e imen, had been a o ed b ${ }^{\text {he Uni e }} \mathrm{i}_{\text {, }}$ Commi ${ }_{\mu i}$ ee on $\mathrm{Ac}_{j} \mathrm{i} \mathrm{i}_{-1}$ ie In ol ing H man S bjec. (UCAIHS) of Ne Yo k Uni ${ }^{-1}$ e ${\underset{i}{i}}_{i}^{i}$. All a ici an ga e Info med con en io o_{i} he e e imen. The ecei ed US\$12 e ho l a e fo mance- ela ed bon .To al a men, anged f om US\$29 . o US\$38.

RESULTS

Unle of i he a ed, he igni cancele el ed a 0.05 iha Bonfe oni co ec,ion fo 12 a $_{A}$ ici an $\mathrm{A}_{A}(0.05 / 12=0.0042)$.

INFLUENCE OF MOTOR ERRORS

H man mo o e o migh make he ac, al ajec. $_{j}$ o longe
 da ${ }_{A}$ of he aining ha e, he e a ici an e e e i ed
 com \ddot{e}_{A} he leng h a $_{i} \dot{\hat{i}}$ of $\mathrm{ac}_{i} \mathrm{al}_{A} \mathrm{o}{ }_{A}$ aigh of each ${ }_{A}{ }^{-1}$ ial,
hich ${ }^{-1}$ efe i_{o} a he actual-to-planned ratio. The mean
 $1.02,1.01,1.07,1.04,1.02,1.06$, e ec,i el fo Pa ici an, P01 P12. The a_{-}io did no ignifican i a i_{-i} he aimed
 each a ici an_{A}.

EFFICIENCY OF ROUTE PLANNING

E am le of heo imal or e and $_{A}$ he ac al o o_{i} e fo one con-di_{-1} ion and one a ici an a a ided in Figure 2A. To a e ho clo e a_{-i} ici an e_{-i} o o imal, e de ned ef cienc a he mone a gain of $\mathrm{he} \mathrm{ac}_{i}$ al o_{i} e di ided b , he ma im m

Fo each $\mathrm{a}_{1} \mathrm{ici} \mathrm{an}_{\mathcal{A}}$, e e amined he he he ac al or o_{A} e confo med o_{-1} hi aigh -line he i_{A} ic. Gi en he oin he ean

 \hat{h}_{i} he aigh -line he in We de ned he ace al leng h of he
 mean aigh, -line indice e e $1.06,1.01,1.01,1.02,1.03,1.03$, $1.02,1.01,1.07,1.04,1.02,1.06$, e ec,i el fo P01 P12. Taking
 ${ }_{i}^{-1}$ aigh -line $_{-1}^{-i}$ he ic onl if he mean ${ }_{-1}^{-1}$ aigh, Hine inde igni can l e ceeded hi o he o nac , $\mathrm{al}_{-1} \mathrm{o}$ - lanned a io mea ed d ing aining. Acco ding o a one- ailed inde enden n_{i-i} o- am le
 ni can n_{1}^{-1} la ge han hei ac al- o_{-1}^{-1} - lanned a io. Fo he o_{-1}^{-1} he $\mathrm{e},{ }_{-1}^{-1} \mathrm{e}$ diffe ence, ho gh igni can, a mall, e ling in an inc ea e in o e leng h no mo e han 2%. The e mall diffe ence eemed oa i ef omanim e fec, localitition of he, ning oin $\mathrm{a}_{i, i} \mathrm{e}$ ain bo de. In mma, a ici and e^{-1} fo mance ag eed ell $i_{-1} h_{i}$ he aigh $_{-1}$-line he i_{-i} ic. An de ia, ion e e malland had negligible effec on inning.

FIGURE 3 | Use of heuristics. (A) A possible optimal route. The route illustrates two heuristics: the straight-line heuristic (within one type of terrain, the route should be a straight line, changing direction only when changing terrain), and the UD heuristic (the route should be symmetrical around the horizontal center line). (B) Hypothetical failure of the straight-line heuristic. Participants' actual routes agreed well with the straight-line heuristic. (C) Hypothetical failure of the LR heuristic. Since the layout of the terrains of the lower panel is a left-right flip of that of the upper panel, the optimal route of one condition reflected around the vertical midline is always the optimal route of the other. The routes of one right-handed participant (P04) were significantly biased toward left. The routes of one left-handed participant (P06) were significantly biased toward right. See
text. The performances of the other 10 participants were consistent with the LR heuristic. (D) Hypothetical failure of the UD heuristic. The path consists of two straight-line segments changing direction only at the lower edge of the desert. It is not symmetrical around the horizontal midline. (E) Index of the failure of the UD heuristic. A path consistent with the UD heuristic will enter and exit the desert at the same horizontal coordinate, $X_{\text {in }}=X_{\text {out }}$, traveling vertically through the desert. We plot the mean difference between $\Delta X=X_{\text {in }}-X_{\text {out }}$ for each participant. Perfect symmetry corresponds to zero difference. Seven of the 12 participants had differences ΔX significantly larger or smaller than zero, indicating a failure of symmetry. See text. Error bars mark 95\% confidence intervals (with Bonferroni correction for 12 participants).

Thi ag eemen made i_{-1} im le ${ }_{A}$ o de c ibe a ici an ${ }^{\prime}{ }^{\prime} \mathrm{ac}_{\mathcal{A}}$ al o e. An o e^{-1} a de $\mathrm{e}_{\mathrm{e}}^{-1}$ mined b onl o^{-1} oin , he oin he e e_{A} he o $\mathrm{e}^{-1} \mathrm{e}_{A} \mathrm{e}$ ed and e i_{A} ed he de e_{A}^{-A}. Fo con enience, ${ }^{-1} \mathrm{e}$

Left-right symmetry heuristic

In $_{A}$ he e e imen, ehad $_{A}$ ai of condi, ion ho ela o ${ }_{A}$. e e j_{i}^{-1} lef igh i^{-1} of each o he $\mathrm{In}_{i} i_{i}^{-1}$ el, he o imal o e ho ld al o be lef igh, i of each of he. Th , he, o o o_{i}^{-i} e in Figure 3C canno, both be o imal.

We $e_{i} \mathrm{ed}_{A}$ he of hi LR he in be amining he he he $o_{A}^{-1} \mathrm{e}^{-1}$ in lef o ien ed and $\operatorname{igh}_{A}^{-1}$ o ien ed ial co ed he
 heo ien a ion of hex à i hen e i ed he de e e_{i} a ea a o nd he ical a i a ho n in he in e_{A} o Figure 3.

A 2^{-1} (o ien a ion) b $10\left(2^{-1} \mathrm{co} \mathrm{a}_{-1}\right.$ io $\times 5 \lambda$) ANOVA a n on $\left(X_{\text {in }}+X_{\mathrm{o}_{3}}\right) / 2^{-4}$ fo each a ici an ${ }_{-1}^{-1}$. No in e ach ion e e igni can . Onl ${ }_{i}$ o a_{A} ici an_{A} had a igni can main effec, of o ien a_{j} ion.

The diffe ence of $\left(X_{\text {in }}+X_{0}\right) / 2$ be, een igh, -o ien, ed and lef o ien ed, ial ga e a mea e of hei lef, igh, bia. Pa ici an, P04 (ighti-handed) a bia ed $2.1 \mathrm{~cm}_{i-i}^{-i} \mathrm{O}$ a d he lef and he lef handed P06 a bia ed $0.9 \mathrm{~cm}_{-i} \mathrm{o}^{-1} \mathrm{a}_{-i}$ he igh.

We concl ded ha, $_{i} 10 \mathrm{o}_{i}$ of $12^{-i} \mathrm{a}_{-i} \mathrm{ici}^{-1} \mathrm{an}_{i}$ confo med o_{i} he LR he i_{-i} ic.

Up-down symmetry heuristic

 In $\mathrm{ecci}_{-1}^{-1} \mathrm{ing}^{-1-1} \mathrm{a}_{-1} \mathrm{ici}^{-1} \mathrm{an}_{-1} \mathrm{ac}_{-1}^{-1}$ al $\mathrm{o}_{-1} \mathrm{e}$ b e e^{-1}, e iden i ed one and onl one ${ }_{s}$ e ned iola, ion of he mme hat e efe o a the one-turn bias (ill a ed in Figure 3D). In ead of ha -
 he o e ha onl one n , a_{i} one of he bo de . D ing info -
 one- n bia commen, ed ha he $_{i}$ did no make a econd ${ }_{i}^{-i}$ n

 \therefore aigh -line he $\mathrm{i}_{i} \mathrm{ic}$.

We com ${ }_{i}$ ed $_{i}$ he diffe ence be, een $X_{i n}$ and X_{o} a an inde of
 e fo med on he diffe encefo each a ici an . Se en a ici an ${ }_{A}$, diffe ence fom o e e igni can , im ling a of he onen bia. Fo he emaining e a ici an e co ld no ejec

We e ec_{-1}^{-1} ed ha he one-i n bia o ld ed ce he a ici-
 i_{1} migh be ha he la ge he diffe ence be, een $X_{i n}$ and X_{0}, he lo e he a ici an' ef cienc. To e hi, e com ed he Pea on' co ela ion be een he abol e al e of he diffe ence be, een $X_{\text {in }}$ and X_{0} and he ef cienc fo he 12 a ici an , $r=-0.46, p=0.13$. The co ela ion a negă i e a e ${ }^{-1} \mathrm{ec}_{\tilde{j}}$ ed $\ddot{\mathrm{b}}$ failed ${ }_{A} \mathrm{o}$ each igni cance obabl beca e_{-1}^{-1}, he n mbe of a ici n_{i}^{-i} (12) a mall o_{i} ha he effec, of hei diffe ence in
 effect of he one $-i=1$ bia le i ible.

MODELS OF UTILITY

All b one a_{A} ici an failed ${ }_{A}$ o choo e_{A} he lea $\mathrm{a}_{A} \mathrm{co}_{A} \mathrm{l} \mathrm{o}_{A} \mathrm{e}$ and half of he a_{A}^{-1} ici an a_{-1}^{-1} e en failed o^{-1} ha $\mathrm{e}^{-1} \mathrm{mme}_{-1}^{-1}$ ical o o .
 a_{-1} io and λ.
We con ide ed he o ibili, ha $_{A}$ he ${ }_{A}$ emana fail e of

 modeled he ili, f nç, ion fo lo e a a o e f nç ion ${\underset{i}{i}}^{\text {h }}$ a amee e α.
 egmen ${ }_{-i}^{\frac{1}{3}} R=\left(I_{f 1}, C_{f 1} ; I_{d}, C_{d}^{-4} ; d_{f 2}, C_{f 2}\right)$. Whe e $I_{f 1}, I_{d}, I_{f 2}$, é ec, i el deno e e_{i} he leng h of he egmen f om he a_{i} ing oin ode e_{i},
 denno $_{-1}^{-i} \mathrm{e}^{-1} \mathrm{co}_{-i} \mathrm{a}_{-1} e^{-1}$ of he eld and ${ }_{-i}^{-1} \mathrm{~h}^{-1}$ eci $c^{-1} \mathrm{de}^{-1} \mathrm{e}_{-i}\left(C_{d} / C_{f} \mathrm{i}_{i}\right.$ he co $\left.{ }^{-1} \mathrm{a}_{\mathrm{i}} \mathrm{io}\right)^{-1}$, and α i ${ }^{-1}$ a f ee a ame e .

We fo m la ed o model of ${ }_{A} \mathrm{ili}_{4}$ fo he economic o lanning $_{-i}$ a k. The e_{i}^{-i} o model diffe ed in ho ${ }_{i}^{-1}$ he a k a f amed (Kahneman and $\dot{\mathrm{T}} \mathrm{e} \mathrm{k}$, 1979). In ${ }_{A}$ he model, he e cei ed

$U^{-}\left(l_{f 1}, l_{d}, l_{f 2}\right)=\left(C_{f} l_{f 1}\right)^{\alpha}+\left(C_{d} l_{d}\right)^{\alpha}+\left(C_{f} l_{f 2}\right)^{\alpha}$
In he econd model, he e cei ed o $_{A}$ al co $_{A}$ a heco $_{i}$ of a o a $_{i}$ e

$U^{-}\left(I_{f 1}, I_{d}, I_{f 2}\right)=\left(C_{f}\left(I_{f 1}+I_{d}+I_{f 2}\right)\right)^{\alpha}+\left(\left(C_{d}-C_{f}\right) I_{d}\right)^{\alpha}$
The e e_{i} o model and o ible faming a e no, e ha i e, $\mathrm{b}_{A i}$ he a e la ible. The fo me model ega d_{i} he de e_{i}^{-1} and $_{A}^{-1}$, he field a e a a_{A} e co ${ }_{A}$ o ce, hile he la $_{A}^{-1}$ e model

[^0]co $\mathrm{n}_{\vec{j}}$ he co ${ }_{-i}$ of he de e_{i} a added $_{-i} \mathrm{o}_{i}$ ha $_{i}$ of he field 4. We efe O_{-1} he model a he separate cost model and he added cost modél, ${ }^{-1} \mathrm{e}$ ec.i el. The ${ }_{i}$ h ee he $\mathrm{i}_{\boldsymbol{i}}$ ic dic c^{-1} ed abo e ${ }_{i}$ ill co e , ond o^{2} nece a o_{A} ie of he o e_{i} imal $\mathrm{a}_{\mathrm{h}} \mathrm{h}$ nde ei he model.
Pa ici an lanned o $\mathrm{o}_{A} \mathrm{ena}_{A}$ e e ei, he do n mme_{-1} icalo one- n. In ei, he cale, he o e co ld be ca ed b^{-1} one a iable, hich ${ }^{-1}$ e efe ed ${ }_{-1}^{-1} \mathrm{o}$ a $X_{\text {lan }}^{-4}$. Fo do n mme, ical o ${ }_{i}$ e, e de ne $X_{\text {lan }}=\left(X_{\text {in }}^{i}+X_{0}\right) / 2$; fo one- n
 coo dina e^{-1} of he ${ }_{A}$ ning oin . $_{i}$.

Conce ning het he he or ${ }_{i}^{-1}$ ei do n me, icalo one-
 ha e fo $\operatorname{alol}_{i}^{-1}$ e na it e model fo he e ceí ed co ${ }_{A i}$: S mme ical-
 One- $-\quad$ n-Added $\left.(O A)^{-i}\right)$. In each model, he e cei ed co ${ }_{-i}$ co ld be
 he ili, a ame e α.

We a me han in each eci c condi, ion of co a_{A} io and λ,
 he o e. Fo each a ici an ${ }^{-1}$ e . ed_{-i} he ac, al $X_{\text {lan }}$ of he 10 condi ion $\left(2 \mathrm{co}_{-1} \mathrm{a}_{-1} \mathrm{io} \times 5 \lambda\right)^{-1}$ ithe for model one b one in he lea $-\quad$ a e method We e_{-1} an e limi, of 3 fo he ed α ${ }^{-1}$ incela ge al e od celi, le change in edic ed beha io ${ }^{-14}$. A an inde of goodne of $A^{\prime \prime}$ he o o ion of da a^{-1} a iance e lained b each model i ho ${ }^{-1} \mathrm{n}^{-1}$ in Table 1^{-1}. The ma ${ }^{-1} \mathrm{im} \mathrm{m}$ o o ion of each a ici an, i highligh, ed in bold. E ce ${ }_{i} \mathrm{P} 12$, all he ma imm o o oion e e abo e 0.7 , it h a median of 0.8^{-1}.
${ }^{4}$ The a m ion of e a a e co, ma inc a iola ion of dominance in he en e ha a o e co ld be efe ed han ano he o $\mathrm{e}^{-i} \mathrm{e}$ en hen he fo me ha bo h a longe leng h and a la ge o_{A} ion of leng h_{A} in de e_{i}. The a m_{i} ion of added co ${ }_{i}$ a oid ${ }_{i}$ hi oblem.

Table 1 | Proportion of variance explained by different utility models.

Participant	Route symmetry		Model		
		SS	SA	OS	OA
		-	$\mathbf{0 . 8 2}$	0.31	---
P02	S	-	$\mathbf{0 . 7 4}$	0.11	--
P03	S	-	$\mathbf{0 . 7 8}$	0.35	0.21
P05	S	-	$\mathbf{0 . 8 6}$	-	0.70
P06	S	-	$\mathbf{0 . 9 7}$	0.89	0.83
P09	S	0.97	0.57	$\mathbf{0 . 8 5}$	--
P01	O	0.55	0.85	$\mathbf{0 . 9 5}$	0.21
P04	O	0.80	$\mathbf{0 . 7 4}$	-	0.15
P07	O	-	0.45	$\mathbf{0 . 8 7}$	--
P08	O	0.71	0.76	$\mathbf{0 . 7 8}$	0.09
P10	O	0.77	0.76	0.61	0.26
P11	O	$\mathbf{0 . 9 8}$	-	$\mathbf{0 . 3 1}$	--
P12	O	-			

Participants with symmetric routes are placed first (S denotes symmetrical. O denotes one-turn). The number in bold is the largest variance explained for any particular participant. The variance explained for entries marked "----" was indistinguishable from 0 .

We fo $\mathrm{nd}_{j} \mathrm{ha}_{A} \mathrm{mo}_{A} \mathrm{a}_{A_{i}} \mathrm{ici} \mathrm{an}_{A}$ 'choice of mme, icalo one\therefore n o ${ }_{A} \mathrm{e}^{-1} \mathrm{a}^{-1} \operatorname{con}^{-1} \mathrm{i}_{A} \mathrm{en}_{i}^{-1} \mathrm{i}_{-1} \mathrm{~h}_{-1}$ hei be ${ }_{A}$ model. Fo e am le, fo ${ }^{-1} \mathrm{P}_{2}{ }^{-1}$ ho had mme ical ${ }_{-1}^{-1}$ e, mme, ical model SA a he be ${ }_{A}$ model, hich acco n_{-1} ed fo 82% of he a iance. All he e a ici an $\mathrm{i}_{-1} \mathrm{~h}$ mme ical o, e a be $\mathrm{a}_{-1}^{-1} \mathrm{i}_{-i} \mathrm{he}^{-1} \mathrm{SA}$ $\operatorname{model}^{-1}\left(\operatorname{hich}^{-1} \mathrm{a}\right.$ me a mme ical o o_{i}^{-1} e). Fi e e^{-1} of he e en

 ho e hibi ed he one, nbia b

Figure 4 ho he da $_{A_{i}}$ and be A_{A} of X_{lan} fo each a ici an . $_{i}$ The e ima ed α a le han onefo e a ici an and g ea ed
 of α in ${ }_{-i}$ he Díic ion.

BIOLOGICAL COSTS

I_{i} i o ible ha, ome of he a ici an, cho e a b-o imal o e o make onl one ${ }_{-1}$ n beca e i ${ }_{i}^{-i}$ o ld ake le mo effo $_{-1}^{-1}$ o e i e a ho ${ }_{-1}^{-1} \mathrm{e}^{-1}$ lanning o mo emen $\mathrm{o}_{1} \mathrm{ld}_{i}$ he o o imal o ${ }_{i} \mathrm{e}^{-i}$. Tha i_{-1}, a ici an migh be ading

 o ibililie belo.

FIGURE 4 | Fit of utility model. The mean of the route parameter $X_{\text {plan }}$ is plotted against λ. Yellow and red respectively correspond to cost ratios of $3: 1$ and $5: 1$, respectively. Dots denote data. Lines denote the model fit to data. Each panel is for one participant. The model shown for each participant is labeled as one of OS, OA, SS, SA. See text. It is the model that with the highest variance accounted for (R^{2}) for that participant. The R^{2} is also shown. For models SS and SA. the models that assume symmetrical routes with three
segments, $X_{\text {plan }}$ denotes ($\left.X_{\text {in }}+X_{\text {out }}\right) / 2$, where $X_{\text {in }}, X_{\text {out }}$ are the horizontal coordinates of the position where each route enters and exits the desert, respectively. Models OS and OA are based on one-turn routes that violate symmetry. For these models, $X_{\text {plan }}$ denotes $X_{\text {tum, }}$ the horizontal coordinate of the single turning position. The free parameter of the utility function, α, estimated from the data for each participant, is shown. See text for full descriptions of the models.

Distance traveled

One o ibili i eo le o ld efe o_{4} a ela ho e_{1} di ance.
 be ho e_{i} han $_{i}$ heo imal o e_{-1}. To $\mathrm{e}_{i, i}$ hi edic, ion, e comA ed he leng hat io of ac al oo imal o e fo each a ici an and each ial and di ided it he mean act al- o- lanned a io of he a_{-1} ici an $\mathrm{an}_{i, i}$ o co ec_{-1}^{-1} fo mo e o . The co ec ed leng h a_{4} io of $\mathrm{a}_{4} \mathrm{al}_{i} \mathrm{oo}$ imal a edic ed o be o e han one. The mean co ec ed leng h i io e e $1.04,1.20,1.23,1.05,1.20,0.84$, $1.37,1.02,0.97,1.06,0.98$, and 1.07 , e ec, i el , fo P01 P12. We
 le han l and fo nd hat onl o a ici an ' (P06 and heo imal P09) co eced leng h a io a igni can malle hanone. The efo e, le effo a ocia ${ }_{-1}^{-1}$ ed i_{-1} ha ho mo ing diance a nlikel ${ }_{i}$ o be an e^{-i} lana ion of o_{i} e lanning b-o imali,

Time used

In each ${ }_{A}$ ial, , he de e_{A} and de ina $_{A}$ ion a ed a oon a ${ }^{\text {a }}$, $\mathrm{a}_{-1} \mathrm{ici} \mathrm{an}_{-1}$ hi nge on he a_{-1}^{-i} ing ci cle of 0.8 cm adi Mo emen ini ian a de ned a he ime hen he a ician mo ed hi ${ }_{i}^{1}$ nge o of he ${ }_{i}$ ing ci cle. We com ${ }_{i}$ ed he ime in e alf om im li a ance o mo emen ini ian a ${ }_{-1}$ he lanning ime and ha $_{-i}^{-i} \mathrm{f}$ om mo emen ini in ion ion $_{-i}^{-i}$ he ime hen he nge a i ed a_{A}^{-1}, he de ina ion ${ }_{A}^{-1}$ he mo émen ${ }_{A}^{-1}$ ime. T ial in hich he nge $\mathrm{lo}_{-1}^{-1} \operatorname{con}_{A}^{-1} \mathrm{ac}_{-1} \mathrm{~h}$ he c een befo e he com le ion of he mo emen ${ }^{*}$ e ee cl ded fom anal i (nomo e han 6% fo an a ici an ${ }^{-1}$). The mean lanning ime e e 3.14 , $1.14,2.32,3.88,1.10,1.10^{-4}, 1.28,1.77,2.37,2.42,2.53$, and 1.16 , e ec, i el, fo P01 P12. The mean mo emen ime e e 4.20, $2.18,2.97,1.85,2.35,2.47,1.65,2.49,1.68,3.50,3.03$, and 2.11 , e ec, i el, fo P01 P12.

The e no ime e e in e e imen. If a ici an had an in e nal incen i e o a e_{-1} ime and hi ohibi ed_{-1} hemf om
 nd_{-i} ha a_{-i} ici and ${ }_{-1}^{-i}$ h highe ef cienc had a longe lanning o mo emen ime. Ho e e, Pea on' co ela ion anal it fo $12 \mathrm{a}_{i}$ ici an n_{i} e ealed no igni can, co ela ion be, een ef cienc and lanning ime, $r=0.33, p=0.30, \mathrm{o}_{-i}^{-i}$ be, een ef cienc and mo emen imé $_{-1} r=-0.09, p=0.79$. We nd nö o o_{i} fo he conjec, $\mathrm{e}_{-1} \mathrm{ha}_{-1} \mathrm{a}$ ici an ${ }_{A}$ ' b-o imal e fo mance " $\mathrm{e} \mathrm{e}_{A}^{-1}$ he
 a_{i} ici an P 09 had a medioc e länning ime and a ho mo emen ime.

Wéal o com, ed_{i} he Pea on' co ela ion coef cien, be een he lanningo mo emen ime and he ef cienc ac or it fo each a ici an. The co ela ion be e_{i}^{-1} een he lanning ime and he ef cienc a $-0.24,0.01^{-1},-0.06^{-1},-0.11^{-1}, 0.01,-0.01,0.02,0.01$, $-0.08,0.04,-0.27,-0.04$, e ec. i el fo P01 P12, among hich no o ${\underset{j}{i}}_{i}$ e co ela, ion e e igni can. The co ela, ion be, een he mo emen ime and he ef cienc a $-0.24,-0.08,0.03,-0.08$, $-0.28,0.07,-0.14,-0.13,-0.28,-0.10,-0.31,-0.11$, e ec,i el fo P01 P12. No o i, i eco ela, e e igni can. In mma, e ee no indica ion $^{-1}$ of a_{A} adeoff be , een ime and ef cienc.

Ano he o ibili e e lo ed a ha a ici an ed one- ${ }_{-1}^{-1} \mathrm{n}_{A} \mathrm{e}_{i}$ o minimite mo emen ${ }_{-1}^{-1} \mathrm{ime}^{-1} \mathrm{If}_{-i}^{-1} \mathrm{e}, \quad \overrightarrow{\mathrm{e}}$ o ld e $\ddot{\mathrm{e}}$, a o i_{-1} e co elaion be mo emen ime and he ab ol \bar{i}_{i}^{-1} e diffe ence of $\hat{X}_{\mathrm{in}}^{-1}$ and ${\underset{X}{\mathrm{o}}}_{i}$ of each ial. The Pea on'
 $\mathrm{X}_{\mathrm{o}}-{ }^{-1} X_{\mathrm{in}}$ ac $\stackrel{-1}{\mathrm{o}}$ ial a $-0^{-1} 15,0.02,0^{-1} .16,-0.04,0.16,0.17$, $-0.35,0.16,-0.07,-0.01,-0.04,0.01$, e ec. i el fo P01 P12. Among hem, onl P06 had a igni can b_{-i}^{i} mall o $\mathrm{i}_{-i} \mathrm{i}$ e co ela ion. Ho e e , ince P06 did no, e hiblid $_{-1}^{-1}$ he one- ${ }_{-}^{-1}$ n bia, he o iti e co elation obabl or e o of chance. Th he ado ion of he one- n bia a no he e l_{i} of an $\mathrm{a}_{4} \mathrm{em}$

DISCUSSION

We de igned an economic a $_{A} \mathrm{o}_{i}$ in e_{A} iga $_{A}$ e ho ell h man

 on $_{A}$ he a ele. The co ${ }_{A}$ e ni, di ance of he de e ${ }_{A}$ a edi he
 -1 ea $_{A} \mathrm{e}^{-1}\left(\text { ed de } \mathrm{e}_{i}\right)^{-1}$. Pa icían an ecei mone a^{-1} e a $\mathrm{d}_{i}^{-1} \mathrm{ha}_{i}$
 ${ }_{i}$ he lea ${ }_{-i}$ co $_{A i} \mathrm{I}^{\text {o }}{ }_{A i}{ }^{-1}$.

Vie ed in he ab, ace a e in e iga ing a ial cogni ion and h man abili o_{-i}^{-i} ea on geome icall (Galli eit, 1990). While o o kb ild on e io e ea ch anging om hat of Tolman (1948) o She a d (1975), he economic o o_{i} e lanning a k e ed allo ed i mani la e e a d e e e licill and

 ne $\ddot{e n}_{i}, \stackrel{e}{\mathrm{e}}$ ain.
We ${ }^{-1}$ com a ed hei e fo mance ${ }_{i} \mathrm{o}$ e fo mance ma imitu
 gain (Figure 2B). $\stackrel{T}{\mathrm{~T}}^{-1} \stackrel{\mathrm{o}}{A}^{\text {hi }} \mathrm{d}^{-1}$ of he $^{-1} \mathrm{a}_{-1} \mathrm{ici}^{-1} \mathrm{an}_{-1}$ écei ed mo ${ }^{2} \mathrm{e}$ han 20\% le han $_{A}$ he migh, ha e ea ned ${\underset{i}{A}}^{-1}$ an o imal choice of o e.

While he e a e ak he e h man fail, no abl in deci ion making nde ik(Kíkahnemanand e k, 1979; L ce, 2000) he e a eal o_{i} a k he e_{j} he come clo e_{j} o ma imiling e ec ed^{-1} gain, e.g., economic mo emen, lanning a k (T omme h e e_{J} al.,
 o a k e emble he $\mathrm{la}_{\boldsymbol{k}} \mathrm{e}$ mo e han he fo me. The efo e i_{A}
 $\operatorname{lig}_{-1} \mathrm{e}$ a e.

Páa ici an ' fail e e e nlikel o be d e o e o o in e $\mathrm{e}_{i} \mathrm{i}$
 leng h e ima ion, he he fo e ce ${ }_{A}$ all ${ }^{-1} \mathrm{e}_{-1}$ ed line anging fom $1 \mathrm{~cm}_{-i}^{-i}$ o 1 m (Tegh, oonian, ${ }_{1}^{-i} 965$), o fo memo ecall of la ge di ${ }_{i}$ ance ${ }^{\circ} \mathrm{o}^{-1} \mathrm{e}$ al kilome $\mathrm{e}_{\mathrm{e}} \quad$ (G ling e_{i} al., 1991). Nei he co ${ }^{-1} \mathrm{ld}_{A}$ he fail e be a_{4} ib $\mathrm{ed}_{j}^{-1} \mathrm{mog}_{i}$ o e o a a e dem-

$\mathrm{O}_{-1} \mathrm{imal}_{-i}^{-1} \mathrm{o}_{-1}^{-1}$ co ld be cha áce e iled b im le geome ic o e ie ha, efe o a heuristics. Fo e am le, an o imal $\mathrm{o}_{i} \mathrm{e}^{-1}$ a $\mathrm{ing}_{i}^{-1} \mathrm{~h}$ o gh e ain homogeneo in co m_{i}^{-1} be a
 ${ }^{-1} \mathrm{e}$ ie of aigh, -line egmen, and can onl change di ection a bo nda ie be, een e_{-1} e ain diffe ing in co . We iden $_{-1} \mathrm{i}$ ed ${ }_{-1}^{-i}$ ee
 LR he ${ }_{i}^{-i}$ ic, and he UD he ${ }_{i}^{-i}$ ic.
 na o do n_{4} he candida, e e befo e elec, ing, he lea, e eni e among ho e emaining. O e e iment al de ign allo ${ }_{i} \mathrm{o}^{2} \mathrm{con}_{i} \mathrm{a}_{-i} \mathrm{o}^{i}$ e all ma imitution of e a d and adhe ence $\mathrm{o}_{i} \mathrm{o}$ le ${ }^{-1}$ nece ${ }^{-1} \mathrm{~b}_{i}$ no f cien, fo o imal e fo mance.

 change ac o ace, o imal o e a e a el aigh line. $\mathrm{I}_{4} \mathrm{i}$ $\mathrm{in}_{i} \mathrm{e} \mathrm{e} \mathrm{ing}_{j}$ ha a_{1} ici an, in o a k , he ema im main and
 $\mathrm{a}_{A} \mathrm{~h} \mathrm{ha}_{A}$ e e clo $\mathrm{e}_{-1} \mathrm{o}$ aigh, line ac o nifo me ain.
Hö e e, almo half of he a ici an failed o follo he UD
 $\mathrm{a}_{A i}$. he bo de of he de $\mathrm{e}_{i=1}$, he cho e o ${ }_{A} \mathrm{e}$ i, h onl one ${ }_{i} \mathrm{n}$
 e ence, one egmen, in he eld and one egmen, in he de e_{A} e e collinea, and commen, d ing deb ie ng gge^{-1} ed $\mathrm{ha}_{t i}$ heí fail e a an o e-gene alita ion of he aigh -line he $\mathrm{i}_{-1}^{-1} \mathrm{ic}$.

We al o e amined he he e co ld̆ in e e a ici an fail e a a con e ence of a igning non-linea ili, ie $\mathrm{o} \mathrm{co}_{4}$ inc ed in each e ain. The he i ic de c ibed abo e e eal o nece a cha ace e i ic of an o ma imiling ili, We coma ed he indi id al ${ }_{i}^{-1}$ of fo ible model ${ }_{i}^{4} \mathrm{ha}_{4}^{-1}$ diffe ed in
 fo each a ici an e a al .

In die ing me icallo l_{i} e ie, he onential a ame e

 la ge lo ${ }_{A}$ o e e al mall lo $\mathrm{e}_{A} \mathrm{ha}_{A}^{A} \mathrm{~m}_{A} \mathrm{o}_{A}$ he ame al ea he la ge lo .Fo e am le, Thale and John on (1990) fo nd ha ${ }^{-1} 5 \%$ of eo le efe ed lo ing $\$ 150$ all a, once ${ }_{A}$ o lo ing $\$ 100^{-1}$ and $_{A}^{-1}$ hen \$50. In o e e imen, ho e e, hen mbe of a ici an it
 of ho ${ }_{-1} \mathrm{e}_{4} \mathrm{~h}$ a ame e al e le han 1 .
${ }^{-1}$ Ho $\quad \stackrel{-1}{0}$ ld a $\mathrm{i}_{1} \mathrm{ci}$ an beha ${ }^{-1}$ e if he co ld ac all alk i_{-1} hin enla ged co ie of o land ca e^{-1} a he han j acing a $a_{i} h ? P$ e io e ea ch on o e lanning in f ll- cale landca e ha foc ed on he effec, of im ene able ob acle on on ${ }_{i}$ e elec, ion. The d namical em model de elo ed Wa en and colleag e (Fajen and Wa èn, 2003; Fajen e_{i} al., 2003) edic ed $\mathrm{o}_{A} \mathrm{e}$ in good ag eemen, i_{i} h h man o e^{-1} elec, ion hile f él mo^{-1} ing in land ca e i_{-1}^{4} ob acle. The ob acle in hei e e imen a in he middle of he a ing o $\underset{A}{ }$ ion and he de ina ion.
 ob_{-1} acle onl $\mathrm{H}_{4}^{-1} \mathrm{hin} \mathrm{a}^{-1}$ mall m^{-1} ange a o $\mathrm{nd}_{-i}^{-1} \mathrm{he} \mathrm{ob}_{-1}^{-1}$ acle. Tha A_{-1}^{-1},
 ${ }^{\circ} \mathrm{ob}$ acle a ab en n_{i} ill he came e clo $\mathrm{e}_{i} \mathrm{o}_{i}$ he ob acle. Thei
 While a ${ }_{i} \mathrm{cici}^{-1} \mathrm{an}_{-1}{ }^{-1}$ co ld eadil lan each o o_{i} e a a hole in o e e imen n_{i}, he ame canno, be aid of he líanning of e_{x} ended o_{i} e in na, ald e ain.
 $\mathrm{o}_{A} \mathrm{e}^{-1} \mathrm{c}$ dided in Fajen and Wa^{-1} en (2003; Fajen e_{-1}^{-1} al., 2003) a e
 $a_{A}^{-1} \mathrm{~h}_{i}$ iece $\frac{1}{\mathrm{i}}$ e linea $\mathrm{a}_{-1}^{-1}{ }_{-1}^{-1} \mathrm{~h}^{-1}$ ab change in di ection $\mathrm{d}^{-1} \mathrm{e}, \stackrel{-1}{\mathrm{o}}$ he ine ial co a ocia, ed e , h making ha $\stackrel{-1}{\mathrm{n}}$. If o , he ma con ide hi biological co ${ }_{i}^{-1}$ (T omme h e, e_{i} al., 2003a,b) in lanning ${ }^{-1} \mathrm{o}_{i} \mathrm{e}^{-1}$ and ade biological co ${ }_{A}$ off again ${ }_{A}$
 ance, a eled, a ici $^{-1}$ an ${ }^{-1}{ }^{-1}$ o $^{-1} \mathrm{e}^{-1}$ ill mo e and mo e e emble a joined e ie of aigh line a he ela i e im o ance of biological co dimini he. Re ea chi needed o ee he he hi edic ion i bo neo and o de e mine ho i h man e fo mance in f ll- cale economic land ca $\mathrm{e}^{-1} \mathrm{con}_{-1}^{-1}$ aining A_{i} ain diffe ing in co ${ }_{i}$.

The economic na iga ion a k de c ibed he e o ided $\mathrm{i}_{-1} \mathrm{~h}$ $a_{i} \mathrm{ool}_{4} \mathrm{o}$ obe i al cognition, he e of a, ial he i_{-1} ic and $\mathrm{di}_{i} \mathrm{o}_{i}$ ion of co b h man $\mathrm{o}_{i} \mathrm{e}$ lanne. The nambig o 1
 no be acce ible ${ }_{i}$ h ot gh ohe a oache .
${ }^{-}$Gi en he im ${ }_{-1}$ ance of na iga ion in h man life, he in e_{-1} igaion of ${ }_{-1}^{-1}$ ible fallacie in h man na iga, ion de $\mathrm{e}^{-1} \mathrm{e}_{\boldsymbol{i}}$ he ame
 and Kahneman, 1974).

In $_{i}$ he e en $A_{i} \mathrm{~d}$ ee amined h man na iga, ion in e_{-i} ain

 $\mathrm{i}_{-1} \mathrm{hfac}_{-1}$ kno n_{-1}^{-1} o affec, na iga ion ch a $\mathrm{e}_{-1}^{-1} \mathrm{e}^{-1}$ nal e^{-1} e en-a_{1}^{-1} ion of a ial info ma ion (Zhang, 1997) o gende diffe ence

In ${ }_{-i} \mathrm{e} \mathrm{m}$ of biological fo aging, he co e con ide ed e e analogo ${ }_{i}$ o ene g and he o imal o ${ }_{A} \mathrm{e}$ lanned minimited
 he e each ni, of di ${ }_{-1}$ ance en ailed $^{-1}{ }^{-1}$, ed i k. An animal a eling h o gh hea il ooded e^{-i} ain, fo e am le, migh, a oid clea ing eci el beca e e $\stackrel{-i}{o}$ ing hem en ail a heigh \hat{i}_{i}^{-i} ened ik of being ob e ed b eda o, a k_{i} hatinc ea e ithe en
 oblem he e_{-1} he ain it elfi nifo mb , he ik a ocia ed i_{i} h diffe en a_{i} of he e ain a e no m_{i}, e.g., ma ine o ae ial natiga, ion (H, ithin and Líne n, 1995).

We ha e cha ace e iledh man e fo mance in $\mathrm{e}_{\mathrm{i}}^{-1} \mathrm{~m}$ of e ec ed $i_{i} \mathrm{ili}_{i}$ and adhe ence ${ }_{i}^{L}$ o he 1 ic , a com a ional heo co e-
 The ne $i+e_{i}^{i}$ o lid be o de elo a de ailed algo inmic de c i ion (Ma^{-i}, econd le el) of ho h man lan o^{-1} e ac o e e ain diffe ing in co ${ }_{A}$. A e no ed abo e, he i_{A} ic $\mathrm{e}_{-1} \mathrm{e}_{-1}$ o ed ce he ea ch ace, b_{i-1} he ion emain a oho h man elec one o ${ }_{i}$ ef om among tho $\mathrm{e}_{-i}^{-1} \mathrm{ha}_{i}$ emain.

The c en e e imen ca_{-1} " e im o an a ec, of he ${ }_{A}$ c-
 o^{2} lan a o_{1} e of a fe kilome e^{-i} ac o e ain a ing in co ${ }^{-1}$ (ee Figure $\mathbf{1}^{1}$), he a ici an ${ }_{A}^{-4}$ o ld be engaged in a $a_{i} \mathrm{k} \mathrm{e}^{-t}$. imila ${ }_{i}$ o o The geome ic ea oning in ol ed i an im ox_{i} an ${ }^{-1} \mathrm{ec}_{i}$ of i al cogni, ${ }_{i}^{i}$. We do no claim ha, o concl ion ill nece a il gene alite o eedid a k^{-i} imila o o o la ge- cale a k in ol ing $\mathrm{o}_{-1} \mathrm{e}$ ac o h nd ed of me e . kilome e . We conjec e_{1} ha he ill and, in an ca e, o o k
 com le oblem .

REFERENCES

A o , K. J. (1958). U ili, ie , $\mathrm{a}_{M_{A}} \mathrm{i}_{i}$ de, choice: a e ie no. e. Econometrica 26, 123.
Ba_{4} aglia, P. W., and Sch $\mathrm{a}_{i} \mathrm{e}$, P. R. (2007). H man ${ }_{i}$ ade off ie ing ime and mo emen, d aion oim o e iomo $^{\circ}$ acc ac in afa eaching a k. J. Neurosci. 27, 69846994
B aina d, D.H. (1997). The cho h ic oolbo . Spat. Vis. 10, 433436.
Dean, M., W , S., and Malone , L. (2007). T ading off eed and acc ac in a id, goal-di ec. ed mo emen. . J. Vis. 7, 112.
Di Fio e, A., and S a eUt S. (2007). Ro ${ }_{i} \mathrm{e}-\mathrm{ba} \mathrm{ed}_{F}$ a eland ha ed o ${ }_{i} \mathrm{e}$ in $\mathrm{m} \mathrm{a}_{i}$ ic ide and ooll monke $:-{ }^{-c} \operatorname{cogni}_{1} \mathrm{i}$ e and e ol iona im lica ion. Anim. Cogn. 10, 317329.

Fajen, B. R., and Wa en, W. H. (2003). Beha io al d namic of ee ing, ob_{i} acle a oidance, and o_{i} e elecion. J. Exp. Psychol. Hum. Percept. Perform. 29, 343362.
Fajen, B. R., Wa en, W. H., Temile , S., and Kaelbling, L. P. (2003). A d namical model of i all -g ided ee ing, ob acle a oidance, and o e elecion. Int. J. Comput. Vis. 54, 1334.
Galli el, C. R. (1990). The Organization of Learning. Camb idge, MA: MIT P e .
Galli el, C. R., and C ame , A. E. (1996). Com aion on me, ic ma in mammal : ge ingo ien ed and choo ing a m li-de, ina ion o, e. J. Exp. Biol. 199, 211 217.
G ling, T., k, A., Lindbe g, E., and A ce, C. (1991). E idence of a e on e-bia e lana ion of none clidean cogni, i e ma'. Prof. Geogr. 43, 143149.
G ling, T., and G ling, E. (1988). Di ${ }_{j}$ ance minimitidian in do $\mathrm{n}_{\mathrm{i}} \mathrm{o}$ n
ede ${ }_{A}$ ian ho ing. Environ. Plan. A 20, 547554.
Golledge, R. (1995). Pah elec, ion and $o_{i} \mathrm{e}$ efe ence in h man na igaion: a og e e of in Spatial ${ }^{-1}$ Information Theory: A Theoretical Basis for GIS, ed A. U. F ank and W. K hn (Ne Yo k: S inge -Ve lag), 207222.
H_{4} chin, E., and Lin, e n, G. (1995). Cognition in the Wild. Camb idge, MA: MIT P e .
Jan on, C. (2007).E e imen ale idence fo $\mathrm{o}_{i} \mathrm{e} \mathrm{in}_{i}$ eg a_{i} ion and ${ }_{i} \mathrm{a}_{-1}$ egic lanning in ${ }^{-1}$ ild ca chin monke. Anim. Cogn. 10, 341356.
Kahneman, D., and T e k, A. (1979). Po ec, heo : an anal i of deciion nde i k. Econometrica 47, 263291.

Kim, B., Lee, S., and Lee, J. (2007). Gende diffe ence in a ial na iga ion. World Acad. Sci. Eng. Technol. 31, 297300.
L ce, R. D. (2000). Utility of Gains and Losses: Measurement-Theoretical and Experimental Approaches. London: La ence Elba m, 8084.
MacG ego, J. N., O me od, T. C., and Ch onicle, E. P. (2000). A model of h man e fo mance on ${ }_{i}$, a eling ale e on oblem.Më. Cognit.28, 11831190.

Ma ,D. (1982). Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. Ne Yo k: F eeman.
Mil, on, K. (2000). Q o adi ? Tac ic of food ea ch and go mo emen, in ima ${ }_{j}$ and of he animal, in On the Move: How and Why Animals Travel in Groups, ed S. Boin ki and P. A. Ga be (Chicago: Uni e i, of Chicago Pe), 375417.
Pelli, D. G. (1997). The ideo oolbo of a e fo i al cho h ic:
A an fo ming n mbe in_{i} o mo ie.

- Spat. Vis. 10, 437442.

S i ,J., and G ling, T. (1987). Se en,ial a_{A} ial choice in he la ge- cale en i onmen. Environ. Behav. 19, 614635.

She a d, R.N. (1975). Fo m, fo ma ion, and an fo ma, ion of in e_{-}nal e eena ion ; in Information Processing and Cognition: The Loyola Symposium, ed.R.L.Sol o (Hill dale, NJ:La ence E lba m), 103117.
$\mathrm{S}_{\mathrm{i}} \mathrm{e}$ hen , D. W., and K eb , J. R. (1986). Foraging Theory. P ince, on, NJ: P ince on Uni e $\underset{-}{1}$ P e .
Tegh, oonian, M. (1965). The j dgmen ${ }_{A}$ of ile. Am. J. Psychol. 78, 392402.
Thale , R. H., and John on, E. J. (1990). Gambling i_{i}, he ho e mone and ing $_{A}$ o b eak e en: he effec of "1 io ${ }^{-1}$ come on ik choice. Manage. Sci. 36, 643660.
Tolman, E. C. (1948). Cogni, i e ma in a_{s} and men. Psychol. Rev. 55, 189208.

T omme h e, J., Malone, L. T., and Land , M. S. (2003a). S a i ical deciion heo and he elec ion of a id, goal-di ec, ed mo emen, .J. Opt. Soc. Am. A 20, 14191433.
T omme h e, J., Malone, L. T., and Land , M. S. (2003b). S a i i ical deciion heo and, ade-off in he conol of mos en o. Spat. Vis. 16, 255275.

T e k, A., and Kahneman, D. (1974). J dgmen, nde nce ain, he i_{1} ic and bia e. Science 185, 11241131.

Vale o, A., and B ne, R. (2007). S ide monke anging $\mathrm{a}_{\mathrm{u}} \mathrm{e} \mathrm{n}$ in Me ican b_{j} o icalfo e_{A} : do_{A} a el ol $\mathrm{e}_{-i} \mathrm{e} \mathrm{ec}_{A}$ lanning? Anim. Cogn. 10, 305315.
Vicke , D., B a ici , M., Lee, M., and Med ede , A. (2001). H man
e fo mance on i all e en, ed a eling ale man oblem. Psychol. Res. 65, 3445.
Wiene, J. M., Lafon, M., and Be hoU, A. (2008). Pa h lanning nde ai ial nce ${ }_{i}$ ain $_{i}$. Mem. Cognit. 36, 495504.

Yo ${ }_{i}$, J. A., and Kelle , P. M. (1983). Shog n , blo g n and ea :he anal i of echnological ef cienc, in Adaptive Responses of Native Amazonians, ed R.B. Hame and W. T.Vicke (Ne Yo k:Academic Pe), 189224.

Zhang, J. (1997). Di ib ed e en, aion a a inci le fo ${ }^{-1}$ he anal i^{-1} of ${ }^{-1}$ cock i_{-1} info ma ion di la . Int. J. Aviat. ${ }^{-1}$ ssychol. $7,105121$.

Conflict of Interest Statement: The a_{A} ho decla $e_{A} \mathrm{ha}_{A}$ he e ea ch a cond c_{c} ed in he ab ence of an comme cial o financial ela ion hi hat co ldbecon \quad ed a a O_{i} en ial con ic of $\operatorname{in}_{A} \mathrm{e}_{A}$.

Received: 16 August 2010; accepted: 10 November 2010; published online: 02 December 2010.
Citation: Zhang H, Maddula SV and Maloney LT (2010) Planning routes across economic terrains: maximizing utility, following heuristics. Front. Psychology 1:214. doi: 10.3389/fpsyg.2010.00214
This article was submitted to Frontiers in Cognitive Science, a specialty of Frontiers in Psychology.
Copyright © 2010 Zhang, Maddula and Maloney. This is an open-access article subject to an exclusive license agreement between the authors and the Frontiers Research Foundation, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

[^0]: ${ }^{3}$ E en fo ho e a ici an hoe hibijed one- nbia eco ld model hei a h a_{i} h ee line egmen ${ }_{j}$ of hich e e collinea.

