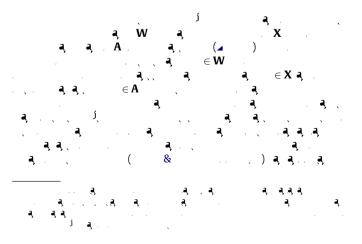

- **,** () . .


1. Introduction

) ą ą (ą & D a, G G Ε () a ą a, & & 8 *

, **\$, © [↑].** , . . .

2. The elements of SDT

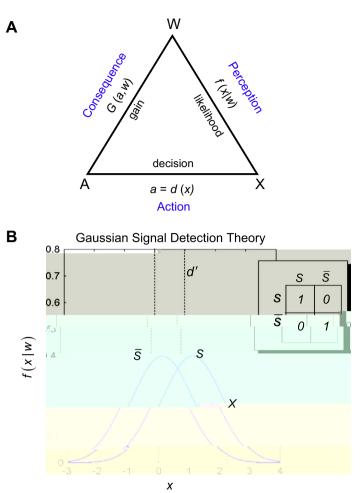


Fig. 1. () w u () G u 9 ∈ X a, **a**, (Gu $\in W$ a &)a)

ą ą í w Rą \in A =a ,__} { u () ą ą ą a, a ą ą)ą a, 8 (ą a, a, a ٩ ٩ ą ą (ą) ą ą ą

$$(|\bar{}) = \frac{1}{\sqrt{\pi}} - \frac{1}{\sqrt{\pi}}$$

$$(|) = \frac{1}{\sqrt{\pi}} - \frac{1}{\sqrt{\pi}}$$

ą ą a, a, ą 11 G(ą 1 1 ą a ą (ą a, ą

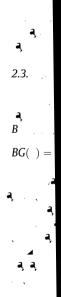
 $() \quad \mathbf{A}, \mathbf{A},$

$$EG[\mid] = \int_{-\infty} G((),) (\mid)$$

$$EG[|] = \int_{-\infty}^{\infty} G((),) (|) = [() =]$$

$$EG[\ \]=\int_{-\infty}^{\infty}G(\ \ (\),\)\ (\ \]) = [\ \ (\)=\]$$

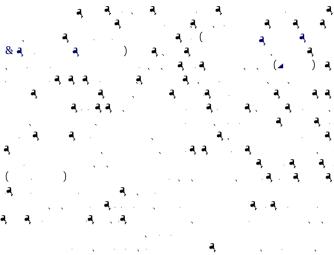
ŗ (, Ha С EG *EG*[| EG Н С ą a ą (ą ą ()**a**, a, () **a**, (()、 ą, ()、 a . . a ą


 $EG[|\bar{}] = EG[|\bar{}] + (-)EG[|\bar{}]$ ()

2.1. D

a, EG વ, વ, ર ર . . . ą ` a a ą **a** . ą a a, a, ..., (,) $EG[|] \ge EG[|]$ ∈ **W**A, ą ्ब् ą **ત** ત ą a ą

ચ્ચ ્વ, વ, વ,


2.4. u

2.5. u ,

3. Modeling biological perception and action

j ą ą, a, a ą a a, ą ą a, a, a, a a, ą a, a ą ą

्रम् २३ २३ २२ २३ २३ २३ २३ २३ २३ ३, २३, २३ २३ २३ २३ २३ २३ २१ २२ २३ २३ २३ २३ २३ २३ २३ २३ २१ २३ २३ २३ २३ २३ २३ २३ २३ २३ २१

 a
 a
 a
 a
 a

 a
 a
 a
 a
 a
 a

 a
 a
 a
 a
 a
 a

 a
 a
 a
 a
 a
 a

 a
 a
 a
 a
 a
 a

 a
 a
 a
 a
 a
 a

 a
 a
 a
 a
 a
 a

 a
 a
 a
 a
 a
 a

 a
 a
 a
 a
 a
 a

 a
 a
 a
 a
 a
 a

 a
 a
 a
 a
 a
 a

 a
 a
 a
 a
 a
 a

 a
 a
 a
 a
 a
 a

 a
 a
 a
 a
 a
 a

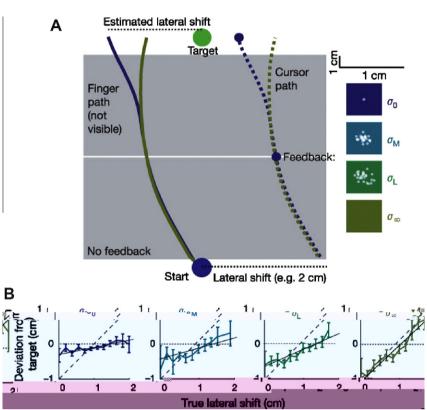
 a
 a
 a
 a
 a
 a

 a
 a
 a
 a
 a
 a

 a
 a
 a
 a
 a
 a

 a
 a
 a
 a
 a
 a

 a
 a
 a
 a
 a
 a


</ta>

ą ą ą ą, ą ą ą ą ą) ą a (,)<u>a</u> .a, a, ą ą (ą ą ą

्रम् २०()म् २२ म् म् म् म् र्म्न् २०२१, म् म् म्

्रम् स्मित् स स्मित्मे मिन्ने स्मित्मे स्मित् स्मित्मे स्म स्मित्मे स्मि

3.4. A, u, u

ą ą ą (a ą a Λ Λ Δ a Δ **a**, (a a ą ą, į ą ą σ , ą a, ą σ ą) ą

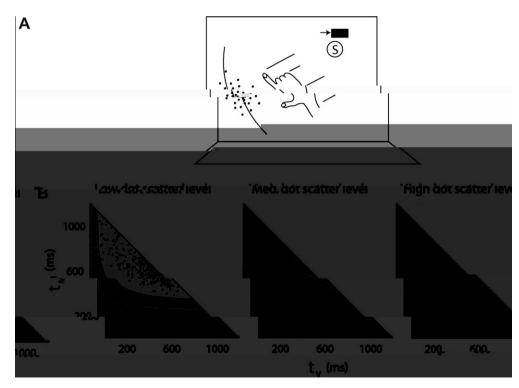
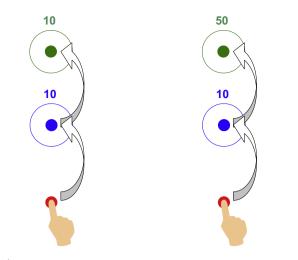
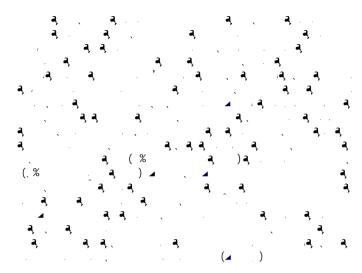
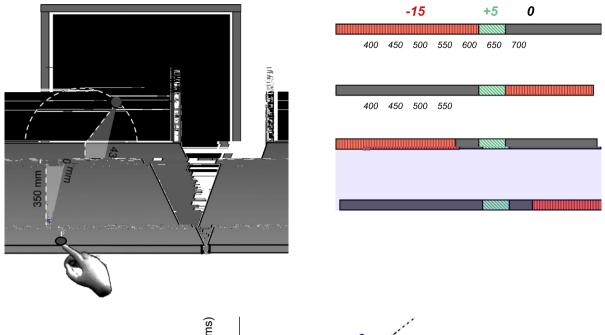
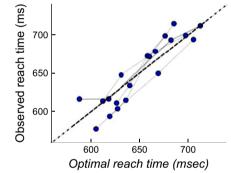
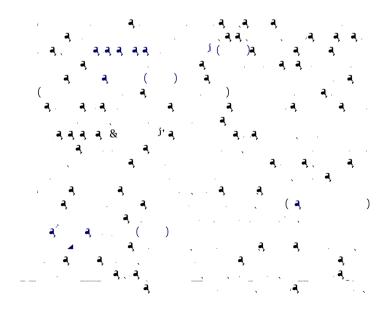


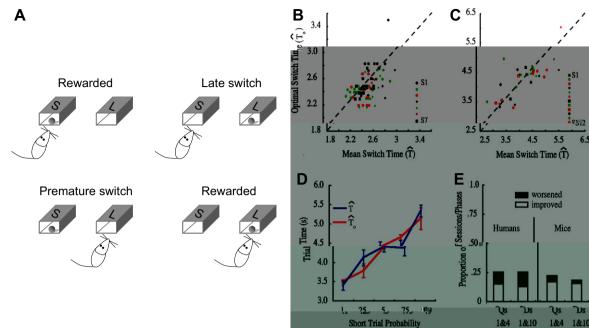
Fig. 5. .() U a (,) a, a ્ન a, a a a a a a a (.)

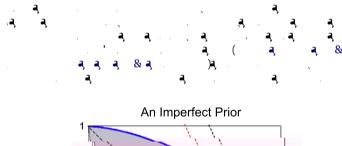



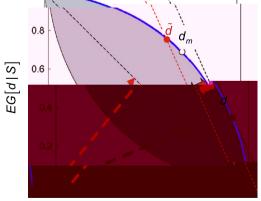

 Fig. 6. A., U.,
 A., U.

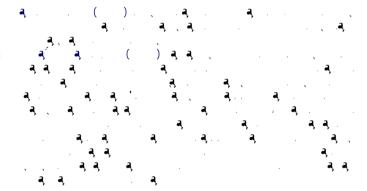




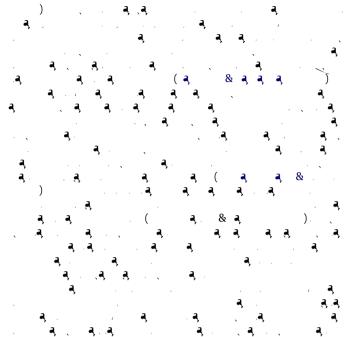

4. Imperfectly optimal observers


न् कि कि जिन्दर, नर, नो निन्न के कि नुन्दर के जिन्दन के जिन्द





EG [d | \overline{S}]



5. Testing the Bayesian hypothesis

6. Conclusion

 a, .
 a, .
 a, .
 a, .
 b, .

વ . . .વ્

Acknowledgments

References

a, N 11 a a , 106(、) ् . मु a, a, a, (,) a 8 ब ब a, . **a**, (ą ą., Nu , 27() Iц В а, а, а**:А**) (() **a**, a, (**a**, . a, 7() Ju) fi) A u M : A a, a, a 96() B ,,, **(** . & a В, . , 4(,)) a, a, a, B Ε... , 9(: a, L -(_.) () C . , . , . u . , . . . (, , ,) (, ,) , . . . 1[°] , . . , **B** a, (,) ् • , , 318

- & (), ब, ब, ब, Nu, 427() & () २, a, a . a, 35() **⊰** . & () **a**, . (, .) (a . . a, a, ...
-) & a, a, a, r. (), a, a, ,a, a,
- u Nu ... , 26 **a**, a, j , ľ () . a, **a**, . a, ર, સ a
- r & a (**a**, . ą., a,
- 41()), **14, 4,** (, ,), 14, 14 ,), **14,** 14 ब ब ब है & a, (ą a,
- u u , & . u u , (... () , ... , u & 3, È
- 2010 8 (). a, . a, a, a, .
- a, a,
- ેવ,વ, () *K* Î(4.4 (**a**)**a**,**a**, Ju a a , **a**, .) A, 20(、) & , a, a, (**a**. . & **.** a, a a, a . . 12() (**२**,) ,4() ⊿ & ą વવ ત ब, ब, L a, () , . a, . & **,** 106 () ą, a, Α Α ्र ब्रु ब्रु र र & **,** a, , 6() & (& , , , (, , , (, , , (a, 🗍 a, (
- , 10(,) , 1